The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell
نویسندگان
چکیده
AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HIV-1) anchorage on target cells. Here we assessed the anti-HIV-1 properties and underlying mechanism of action of AS1411. The antiviral activity of AS1411 was determined towards different HIV-1 strains, host cells and at various times post-infection. Acutely, persistently and latently infected cells were tested, including HIV-1-infected peripheral blood mononuclear cells from a healthy donor. Mechanistic studies to exclude modes of action other than virus binding via NCL were performed. AS1411 efficiently inhibited HIV-1 attachment/entry into the host cell. The aptamer displayed antiviral activity in the absence of cytotoxicity at the tested doses, therefore displaying a wide therapeutic window and favourable selectivity indexes. These findings, besides validating cell-surface-expressed NCL as an antiviral target, open the way for the possible use of AS1411 as a new potent and promisingly safe anti-HIV-1 agent.
منابع مشابه
AS1411-conjugated gold nanospheres and their potential for breast cancer therapy
AS1411 is a quadruplex-forming DNA oligonucleotide that functions as an aptamer to target nucleolin, a protein present on the surface of cancer cells. Clinical trials of AS1411 have indicated it is well tolerated with evidence of therapeutic activity, but improved pharmacology and potency may be required for optimal efficacy. In this report, we describe how conjugating AS1411 to 5 nm gold nanos...
متن کاملA Synthetic Aptamer-Drug Adduct for Targeted Liver Cancer Therapy
AS1411 (previously known as AGRO100) is a 26 nucleotide guanine-rich DNA aptamer which forms a guanine quadruplex structure. AS1411 has shown promising utility as a treatment for cancers in Phase I and Phase II clinical trials without causing major side-effects. AS1411 inhibits tumor cell growth by binding to nucleolin which is aberrantly expressed on the cell membrane of many tumors. In this s...
متن کاملA new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism.
AS1411 is a first-in-class anticancer agent, currently in phase II clinical trials. It is a quadruplex-forming oligodeoxynucleotide that binds to nucleolin as an aptamer, but its mechanism of action is not completely understood. Mechanistic insights could lead to clinically useful markers for AS1411 response and to novel targeted therapies. Previously, we proposed a model where cell surface nuc...
متن کاملImproved in Vitro Efficacy of Gold Nanoconstructs by Increased Loading of G-quadruplex Aptamer
This paper describes how in vitro efficacy of aptamer-loaded gold nanostars (Apt-AuNS) can be enhanced by the increased loading of a G-quadruplex homodimer AS1411 (Apt) on the AuNS surface. In a low pH buffer environment, the loading density of Apt on AuNS was increased up to 2.5 times that obtained using the conventional salt-aging process. These highly loaded AuNS nanoconstructs (*Apt-AuNS) w...
متن کاملAS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin.
AS1411 is a quadruplex-forming oligonucleotide aptamer that targets nucleolin. It is currently in clinical trials as a treatment for various cancers. We have proposed that AS1411 inhibits cancer cell proliferation by affecting the activities of certain nucleolin-containing complexes. Here, we report that protein arginine methyltransferase 5 (PRMT5), an enzyme that catalyzes the formation of sym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 47 شماره
صفحات -
تاریخ انتشار 2016